

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

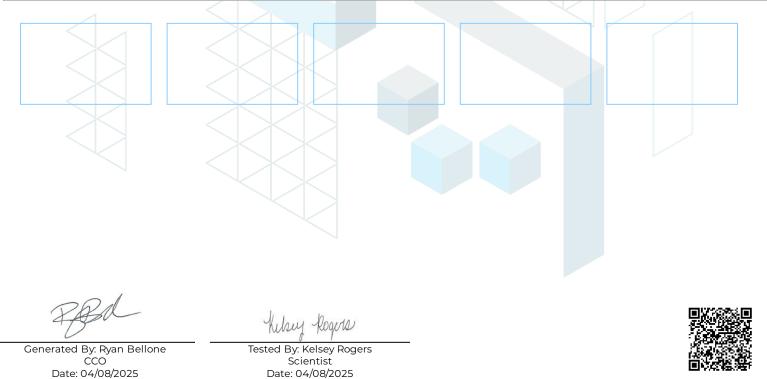
ample ID: SA-250331-59 atch: NY.HGM.STR.03 /pe: Finished Product - atrix: Edible - Gummy hit Mass (g): 2.88426		Received: 03/31/2025 Completed: 04/08/2025			Client GTI - Core Growth 85 John Hicks Drive Warwick, NY 10990 USA		
			Summary				
				D. L. T. A. L	Ch. 4		
	Brabhburry Heng Darland Gassley Batch VD: NY HOM STR.23 Nerg Deats: 3127/02035		Test	Date Tested	Status		
	NEG Date: architecto		Cannabinoids	04/01/2025	Tested Tested		
			Foreign Matter	03/31/2025			
	CHILLY A CALL		Heavy Metals	04/02/2025	Tested		
			Microbials	04/02/2025	Tested		
			Mycotoxins	04/01/2025	Tested		
			Pesticides	04/01/2025	Tested		
			Residual Solvents Ferpenes	04/02/2025 04/08/2025	Tested		
	And						
0.225 %	0.316 %	0.553 %	Not Tested	Not Detected	Yes		
Total ∆9-THC		tal Cannabinoids Mo	isture Content	Foreign Matter	Internal Standard Normalization		
Total A9-THC annabinoids k nalyte	by HPLC-PDA	LOQ		lesult	Normalization		
annabinoids k _{nalyte}	by HPLC-PDA		R	result (%)	Result (mg/unit)		
annabinoids k nalyte 3C	by HPLC-PDA LOD (%)	LOQ (%)	R	lesult	Normalization		
annabinoids k nalyte BC BCA	oy HPLC-PDA LOD (%) 0.00095	LOQ (%) 0.00284	R	result (%) <loq< td=""><td>Result (mg/unit) <loq< td=""></loq<></td></loq<>	Result (mg/unit) <loq< td=""></loq<>		
annabinoids k nalyte 3C 3CA 3CV	Dy HPLC-PDA LOD (%) 0.00095 0.00181	LOQ (%) 0.00284 0.00543	R	Result (%) <loq ND</loq 	Result (mg/unit) <loq ND</loq 		
annabinoids k nalyte BC BCA BCV BD	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006	LOQ (%) 0.00284 0.00543 0.0018	R	Result (%) <loq ND ND</loq 	Normalization Result (mg/unit) <loq ND ND ND</loq 		
annabinoids k nalyte BC BCA BC BD BDA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081	LOQ (%) 0.00284 0.00543 0.0018 0.00242	R	Result (%) <loq ND ND 0.316</loq 	Normalization Result (mg/unit) <loq ND ND 9.13</loq 		
annabinoids k nalyte BC BCA BC BD BDA BDA BDV	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013	R	Result (%) <loq ND ND 0.316 ND</loq 	Normalization Result (mg/unit) <loq ND ND 9.13 ND</loq 		
annabinoids k nalyte 3C 3CA 3CV 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.0013 0.00182	R	Result (%) <loq ND ND 0.316 ND <loq< td=""><td>Normalization Result (mg/unit) <loq ND ND 9.13 ND <loq< td=""></loq<></loq </td></loq<></loq 	Normalization Result (mg/unit) <loq ND ND 9.13 ND <loq< td=""></loq<></loq 		
annabinoids k nalyte BC BCA BCA BCV BD BDA BDV BDVA BG	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00061 0.00021	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063	R	Result (%) <loq ND ND 0.316 ND <loq ND</loq </loq 	Normalization Result (mg/unit) <loq ND ND 9.13 ND <loq ND <loq ND</loq </loq </loq 		
annabinoids k nalyte BC BCA BCA BCV BD BDA BDA BDV BDVA BGA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00061 0.00021 0.00057	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274</loq </loq 	Normalization Result (mg/unit) <loq ND ND 9.13 ND <loq ND 0.0790</loq </loq 		
annabinoids k nalyte BC BCA BCA BCA BDA BDA BDA BDV BDVA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00021 0.00021 0.00057 0.00049	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND</loq </loq 	Normalization Result (mg/unit) <loq ND ND 9.13 ND <loq ND 0.0790 ND</loq </loq 		
annabinoids k nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BLA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND</loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 9.13="" <loq="" nd="" nd<="" td=""></loq>		
annabinoids k nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BL BLA BN BNA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056 0.00056 0.0006	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND .00910 ND</loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 0.262="" 9.13="" <loq="" nd="" nd<="" td=""></loq>		
annabinoids k nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BL BLA BN BNA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0006 0.0006	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND .00910 ND ND ND</loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 9.13="" <loq="" nd="" nd<="" td=""></loq>		
annabinoids k	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0006 0.0008 0.00184 0.00184 0.00184 0.00056 0.00184 0.00056 0.00184 0.00056 0.00184 0.00057 0.00056 0.00057 0.00057 0.00057 0.00056 0.00057 0.00057 0.00057 0.00056 0.00057 0.00057 0.00056 0.00057 0.00057 0.00056 0.00057 0.00056 0.00057 0.00056 0.	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND .00910 ND</loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 9.13="" <loq="" nd="" nd<="" td=""></loq>		
annabinoids k nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BL BLA BLA BNA BNA BT B-THC	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0006 0.0008 0.0018 0.00164 0.00164 0.00076	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.00227	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND ND ND ND ND ND ND ND ND ND ND</loq </loq 	Result (mg/unit) <loq ND ND 9.13 ND <loq ND <loq ND 0.0790 ND ND ND ND ND ND ND ND ND ND ND ND ND</loq </loq </loq 		
annabinoids k nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BLA BLA BLA BLA BLA BLA BLA BLA BLA BL	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00049 0.0012 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND ND ND ND ND ND ND</loq </loq 	Result (mg/unit) <loq ND ND 9.13 ND <loq ND <loq ND 0.0790 ND ND ND ND ND ND ND ND ND ND ND ND ND</loq </loq </loq 		
annabinoids k nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BL BLA BLA BLA BLA BLA BLA BLA BLA BLA	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00057 0.00057 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0006 0.0008 0.0018 0.00164 0.00164 0.00076	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00181 0.0054 0.00312 0.00227 0.00251 0.00206	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND ND ND ND ND ND ND ND ND ND ND</loq </loq 	Normalization Result (mg/unit) <loq cloq="" nd="" nd<="" oud="" out="" sud="" td=""></loq>		
annabinoids k nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BLA BLA BLA BLA BLA BLA BLA BLA BLA BL	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00049 0.0012 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00181 0.0054 0.00312 0.00227 0.00225	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND .00910 ND ND ND ND ND 0.225 ND <loq ND</loq </loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 0.262="" 6.48="" 9.13="" <loq="" nd="" nd<="" td=""></loq>		
annabinoids k nalyte BC BCA BCA BCA BCA BCA BCA BDA BDA BDA BDA BCA BCA BCA BCA BCA BCA BCA BCA BCA BC	Dy HPLC-PDA LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00043 0.00043 0.00057 0.00049 0.0012 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0	LOQ (%) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00181 0.0054 0.00312 0.00227 0.00251 0.00206	R	Result (%) <loq ND ND 0.316 ND <loq ND .00274 ND ND ND ND ND ND ND ND ND ND ND ND ND</loq </loq 	Normalization Result (mg/unit) <loq 0.0790="" 0.262="" 6.48="" 9.13="" <="" <loq="" nd="" td=""></loq>		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 04/08/2025

Tested By: Nicholas Howard

stéd By: Nicholas Howar Scientist Date: 04/01/2025


This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

2 of 7

NY.HGM.STR.03								
Sample ID: SA-250331-59501 Batch: NY.HGM.STR.03 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 2.88426			Received: 03/31/2025 Completed: 04/08/2025			Client GTI - Core Growth 85 John Hicks Drive Warwick, NY 10990 USA		
Terpenes by GC	-MS	Ų			X			
Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)	
α -Bisabolol	0.0002	0.001	ND	Limonene	0.0002	0.001	ND	
(+)-Borneol	0.0002	0.001	ND	Linalool	0.0002	0.001	ND	
Camphene	0.0002	0.001	ND	β-myrcene	0.0002	0.001	ND	
Camphor	0.0004	0.002	ND	Nerol	0.0002	0.001	ND	
3-Carene	0.0002	0.001	ND	cis-Nerolidol	0.0002	0.001	ND	
β-Caryophyllene	0.0002	0.001	ND	trans-Nerolidol	0.0002	0.001	ND	
Caryophyllene Oxide	0.0002	0.001	ND	Ocimene	0.0002	0.001	ND	
α -Cedrene	0.0002	0.001	ND	α -Phellandrene	0.0002	0.001	ND	
Cedrol	0.0002	0.001	ND	α -Pinene	0.0002	0.001	ND	
Eucalyptol	0.0002	0.001	ND	β-Pinene	0.0002	0.001	ND	
Fenchone	0.0004	0.002	ND	Pulegone	0.0002	0.001	ND	
Fenchyl Alcohol	0.0002	0.001	ND	Sabinene	0.0002	0.001	ND	
Geraniol	0.0002	0.001	ND	Sabinene Hydrate	0.0002	0.001	ND	
Geranyl Acetate	0.0002	0.001	ND	α -Terpinene	0.0002	0.001	ND	
Guaiol	0.0002	0.001	ND	γ-Terpinene	0.0002	0.001	ND	
Hexahydrothymol	0.0002	0.001	ND	α -Terpineol	0.0001	0.0005	ND	
α -Humulene	0.0002	0.001	ND	γ-Terpineol	0.0001	0.0005	ND	
Isoborneol	0.0002	0.001	ND	Terpinolene	0.0002	0.001	ND	
Isopulegol	0.0002	0.001	ND	Valencene	0.0002	0.001	ND	
				Total Terpenes (%)			0.000	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

3 of 7

Sample ID: SA-250331 Batch: NY.HGM.STR.03 Type: Finished Produc Matrix: Edible - Gumm Unit Mass (g): 2.88426 Heavy Metals	st - Ingestible	Received: 03/31/2025 Completed: 04/08/2025	Client GTI - Core Growth 85 John Hicks Drive Warwick, NY 10990 USA	
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	
	0.002	0.02	ND	
Arsenic	0.002	0102		
Arsenic Cadmium	0.002	0.02	ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/08/2025

Tested By: Chris Farman

ested By: Chris Farman Scientist Date: 04/02/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

4 of 7

NY.HGM.STR.03

Sample ID: SA-250331-59501 Batch: NY.HGM.STR.03 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 2.88426

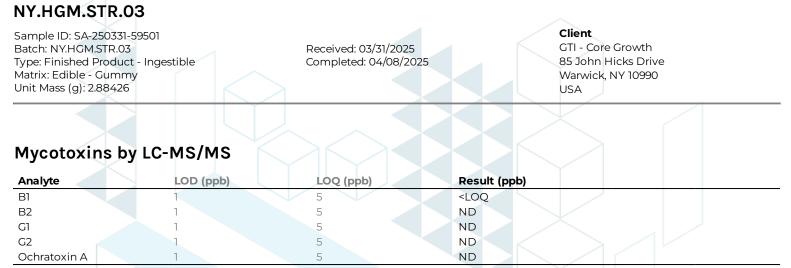
Received: 03/31/2025 Completed: 04/08/2025 **Client** GTI - Core Growth 85 John Hicks Drive Warwick, NY 10990 USA

Pesticides by LC-MS/MS and GC-MS/MS

	LOD	LOQ	Result		LOD	LOQ	Result
Analyte	(ppb)	(ppb)	(ppb)	Analyte	(ppb)	(ppb)	(ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Bifenazate	30	100	ND	Metalaxyl	30	100	ND
Bifenthrin	30	100	ND	Methiocarb	30	100	ND
Boscalid	30	100	ND	Methomyl	30	100	ND
Carbaryl	30	100	ND	Mevinphos	30	100	ND
Carbofuran	30	100	ND	Myclobutanil	30	100	ND
Chloranthraniliprole	30	100	ND	Naled	30	100	ND
Chlorfenapyr	30	100	ND	Oxamyl	30	100	ND
Chlorpyrifos	30	100	ND	Paclobutrazol	30	100	ND
Clofentezine	30	100	ND	Permethrin	30	100	ND
Coumaphos	30	100	ND	Phosmet	30	100	ND
Daminozide	30	100	ND	Piperonyl Butoxide	30	100	ND
Diazinon	30	100	ND	Prallethrin	30	100	ND
Dichlorvos	30	100	ND	Propiconazole	30	100	ND
Dimethoate	30	100	ND	Propoxur	30	100	ND
Dimethomorph	30	100	ND	Pyrethrins	30	100	ND
Ethoprophos	30	100	ND	Pyridaben	30	100	ND
Etofenprox	30	100	ND	Spinetoram	30	100	ND
Etoxazole	30	100	ND	Spinosad	30	100	ND
Fenhexamid	30	100	ND	Spiromesifen	30	100	ND
Fenoxycarb	30	100	ND	Spirotetramat	30	100	ND
Fenpyroximate	30	100	ND	Spiroxamine	30	100	ND
Fipronil	30	100	ND	Tebuconazole	30	100	ND
Flonicamid	30 <	100	ND	Thiacloprid	30	100	ND
Fludioxonil	30	100	ND	Thiamethoxam	30	100	ND
X				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/08/2025

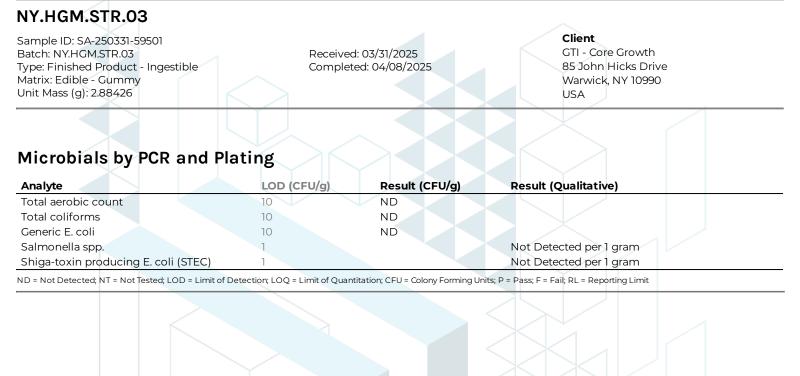

Tested By: Anthony Mattingly Scientist

Date: 04/08/2025 Date: 04/01/2025 Date:

5 of 7

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/08/2025


Tested By: Anthony Mattingly Scientist

Date: 04/08/2025 Date: 04/01/2025 Date:

6 of 7

Generated By: Ryan Bellone CCO Date: 04/08/2025

Tested By: Sara Cook

Tested By: Sara Cook Laboratory Technician Date: 04/02/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. RCA Laboratories can provide measurement uncertainty upon request.

7 of 7

NY.HGM.STR.03

Sample ID: SA-250331-59501 Batch: NY.HGM.STR.03 Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 2.88426

Received: 03/31/2025 Completed: 04/08/2025 **Client** GTI - Core Growth 85 John Hicks Drive Warwick, NY 10990 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5]	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	< 10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/08/2025

Tested By: Scott Caudill Laboratory Manager Date: 04/02/2025

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories can provide measurement uncertainty upon request.